Resources

Community-managed Natural Farming

Community-Managed Natural Farming (CNF) methods like dry, wet, and live mulching and 365-day multi-layered multiple cropping quickly build soil microbiota and aeration, which improves water percolation, soil water retention, and air-water harvesting. CNF and soil humus increase plant water needs. This reduces water input, improves agricultural water efficiency, and drought-proofs crops without affecting yields.

Initiative of the Andhra Pradesh (AP) Government

The AP government started the Rythu Sadhikara Samstha (RySS) in 2015 to bring six million farmers and six million hectares of land under AP Community-managed Natural Farming (APCNF) by 2030. By 2020–21, over 700,000 farmers and farm workers in 3,730 Gram Panchayats (GPs) participated in the program.

CoreCarbonX impact study of APCNF in six agro-climatic zones

CoreCarbonX has been hired to do a large-scale, comprehensive study in six agro-climatic zones of Andhra Pradesh to confirm and measure how much water and energy can be saved because natural farming uses less water on agricultural farmlands. Control groups of CNF and non-CNF farmers cultivating three major crops in Kharif and Rabi across the following six agro-climatic zones are assessed.

  1. High Altitude Tribal areas of Srikakulam, Vizianagaram, Visakhapatnam, East Godavari districts,
  2. North Coastal Zone of Plains of Srikakulam, Vizianagaram, Visakhapatnam,
  3. Godavari Zone (East Godavari Plains, West Godavari),
  4. Krishna Zone (Krishna, Guntur, Prakasam),
  5. Southern Zone (Chittoor, Kadapa, Nellore),
  6. Scarce Rainfall Zone (Anantapur, Kurnool)

This assessment is followed by district-level natural farming analysis and mapping to improve understanding of the scale of impact of APCNF and provide actionable information about natural farming practices’ social and economic impacts for state-level adaptation planning, targets, and actions. Policymakers, administrators, development partners, and NGOs use this information to plan and execute interventions.

Community-managed Natural Farming saves water and energy consumption

A preliminary pilot study has shown that Community-managed Natural Farming (CNF) has the potential to alleviate the over-extraction of groundwater by decreasing the need for irrigation water and the state’s fiscal burden on power subsidies, thereby achieving the objectives of both water and energy conservation.

The project also involved the assessment of increased market participation from smallholder CNF farmers.

We work on the impact assessment of Community-managed Natural Farming initiatives of various governments. 

 

Join now

Rice farming and methane emissions

During rice farming, the fields are often flooded, creating an ideal environment for the decomposition of organic matter and the subsequent release of methane gas, a greenhouse gas 27 times more potent than carbon dioxide. Global rice production accounts for 8-12% of human generated methane.

Partnership to benefit the farmer community and the environment 

CoreCarbonX(CCX) and Vida Carbon Corp have collaborated on a project that would help the paddy farmer community implement improved water management systems in 100,000 hectares of rice fields in Telangana. 

Farmers in Telangana have no financial incentive to conserve water or energy because both are fully subsidised. CCX plans to address this issue by providing farmers with education on “alternative wetting and drying” techniques. This method of farming makes use of a gauge to show exactly how much water is in various parts of the field. With this equipment, farmers can control the water supply to their crops precisely. Reduced methane emissions can be achieved by limiting the length of time that rice fields are submerged in water. The rate of decomposition of organic material and, consequently, methane emissions will be reduced when rice fields are flooded for shorter periods of time.

Farmers economic gain from carbon credits and other co-benefits

Farmers who take part will reap financial rewards from the project’s success through a share of the money made from selling carbon credits.

Benefits such as these are gained in addition to the accomplishment of six SDGs set by the United Nations:

  • Reduced water consumption by 15%-25%.
  • Increases in Farmer’s Profits.
  • Promote better collaboration between entrepreneurs.
  • Water pump fuel and energy consumption will be reduced.

 

5,400,000

Est. tonnes of CO2 reduced

1,00,000 

Hectares of rice fields supported

2022

Project start date

7-9 years

Project life

Types of Offsets Produced

  • Improved Agricultural Practices
  • Reduction
Registry and Certifications

Sustainable Development goals from Co-benefits

 

We are working with corporations and governments to help farmer communities adopt sustainable farming practices. Join us.

 

Join now

Partnership to benefit the health and livelihoods of rural women

CoreCarbonX and Vida Carbon Corp are working together to help 300,000 households in the Indian state of Odisha switch to clean cooking with the help of improved and very efficient stoves. These cookstoves reduce energy loss and increase heat efficiency.

The World Health Organization estimates that 2.4 billion people in the developing world still cook over open flames or inefficient stoves fueled by environmentally-harmful fuels. Cleaner cooking offers a solution to the dangerous indoor air pollution which is the leading cause of death among women and children in homes.

Partnership to benefit the health and livelihoods of 300,000 households  

CoreCarbonX uses a unique distribution method to reach rural residents in remote regions who now have access to clean cooking. The cookstoves are distributed at a little or no cost. Rural women are made aware of its advantages over open cooking and trained on cookstove operation and its cleaning. The cookstoves are serialized and being tracked to ensure project success and collect user feedback.

This project achieves 9 UN Sustainable Development Goals delivering co-benefits as given below:

  • Improvement in air quality benefits the health of women and kids.
  • Creation of employment opportunities in nearby areas for the distribution, installation, and maintenance of cookstoves
  • Reduced firewood needs lower deforestation and nearby forest degradation.
  • Lessons manual labor for wood gathering, which is largely a woman’s job.

While delivering various co-benefits, this project has a significant geographic reach and is very scalable. 

4,600,000

Est. tonnes of CO2 reduced

3,00,000 

Cookstoves distributed

2022

Project start date

7 years

Project life

Types of Offsets Produced

  • Improved Energy Efficiency
  • Reduction
Registry and Certifications

 

Sustainable Development goals from Co-benefits

 

We are working with corporations and governments to widen the use of clean cooking. Join us.

 

Join now

The refrigeration and air conditioning industries make heavy use of ozone depleting compounds, especially hydrochlorofluorocarbons (HCFCs). Global warming potentials (GWPs) for most HCFCs and HFCs utilised in these applications are between 1,000 and 4,000 times higher than that of carbon dioxide. Product and machinery designers should look for GWP alternatives that excel in several areas: energy efficiency, safety, operating costs, and environmental performance (which in most cases is a combination of high energy efficiency, minimal leakage and a low or very low GWP refrigerant).

To encourage emission reduction via the use of low GWP(Global Warming Potential) refrigerant technology and management, the Japanese Ministry of the Environment (MOEJ) launched a program known as the “Initiative on Fluorocarbons Life Cycle Management.” As part of this program, MoEJ in association with the Mitsubishi Research Institute (MRI) have begun a project to evaluate the global refrigeration industry’s current state of affairs and the progress made toward the adoption of low global warming potential (GWP) refrigerants.

MRI collaborated with CoreCarbonX on the research for India

CoreCarbonX, in association with MRI, investigated the state of refrigerant conversion to low-GWP refrigerants in India and the legal and regulatory framework around this transition in light of the Montreal Protocol/Kigali Amendment that were introduced to outline the phasing-out of ozone-depleting refrigerants.

The report explains the current state of the conversion to low-GWP refrigerants, projects developed to phase out HCFCs as well as yearly and projected sales estimates for both refrigerants and air conditioners. These results provide a foundation for future collaboration between India and Japan to reduce the country’s emissions of refrigerants that have high ozone depleting potential (ODP).

We are working with various governments to fight climate change. Join us.

 

Join now

Samoa, a South Pacific archipelago comprising 12 Polynesian islands, signed the UNFCCC in 1992 and has committed to reduce GHG emissions. In this context, Samoa has to submit a high-quality National Communication and Biennial Update Report to the UNFCCC including GHG inventory report.

Changes in the atmosphere’s substance balance, such as greenhouse gas concentration, contribute to climate change. Greenhouse gases absorb infrared, warming the planet. Anthropogenic activities have been affecting greenhouse gas concentrations inducing climate crisis.

GHG inventories help understand GHG sources and causes and reduce their global impact. A GHG inventory quantifies emissions and sinks for a given jurisdictional or organizational boundary.   These inventories, which are updated to reflect changes in GHG accounting, influence emission reduction plans and policies and assess progress over time.  IPCC utilises Global Warming Capacity (GWP) to compare each GHG’s heat-trapping potential to CO2.

Samoa’s government commissioned CoreCarbonX to create a National Inventory Report on the country’s greenhouse gas emissions in compliance with UNFCCC requirements.

This study estimates Samoa’s GHG emissions and sinks from 2010 to 2020 from four sectors: energy, industry, agroforestry, and waste. The report presents emission data by source, sink, and gas.

We are working with various governments to fight climate change. Join us.

 

Join now

Skills Strengthening for Industrial Value Enhancement (STRIVE) project is a Government of India project funded by the World Bank under their Programme-for-Result Financing Instrument that ensures outcome based funding. The objective of this national level project is to improve the relevance and efficiency of Skills training provided through ITI s and apprenticeships.  

Core CarbonX (CCX) team takes pride in assisting the Orissa Government in completing STRIVE project in the state.

STRIVE is divided into four results areas:

a) Improved Performance of Industrial Training Institutes

b) Increased Capacities of State Governments to Support Industrial Training Institutes and Apprenticeship Training

c) Improved Teaching and Learning

d) Improved and Broadened Apprenticeship Training

A total of 49 Indian Technical Institutes (ITI) were considered for the project all over Odisha. CCX measured the labor market performance of project and non-project ITIs disaggregated by gender and social groups. We gathered information of ITI students who are not in employment or have left the employment along with the reasons for the same. While collecting such information, specific reasons that induced unemployment such as- Industry closed because of lockdown, Reverse migration due to Pandemic etc. were also identified. We assessed the impact of the ITI training programs in terms of relevance, effectiveness, efficiency and sustainability. Post the data collection and analysis, insights were drawn and inputs were provided for corrective measures required to be taken in order to improve the employability aspects during and after the ITI trainings. We also assessed ITI graduates satisfaction level related to the type of ITI training attended.

We are working with various governments to enhance the training programs in ITIs. Join us.

 

Join now

The project activity helps in estimation of carbon stock present in mangrove forest of Kakinada, East Godavari, Andhra Pradesh using remote sensing.

A large fraction of the mangroves in India was destroyed due to aquaculture and agriculture expansion.

Carbon Stock Estimation:

The focus of this study was to employ spectral signatures and morphological characteristics of mangroves to generate an improved index for separating mangrove vegetation from non-mangrove vegetation classes and to compare the performance of the index with other established vegetation discriminating indices [(e.g. Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Soil Adjusted Vegetation Index (SAVI), Simple Ratio (SR)] using LandSat 8 OLI imagery. The latest index developed in this study namely ‘Combined Mangrove Recognition Index (CMRI)’ incorporates outputs from NDVI and NDWI indices in order to assess exclusively the mangrove vegetation using information like greenness and water content (succulence).

We work with governments on carbon stock estimation using remote sensing. Join us.

 

Join now

The evaluation study assessed the utilization of individual households latrines constructed in the state of Karnataka and efficacy of this programme under Swachh Bharat Abhiyan.

Monitoring and Evaluation:

The study ascertained whether the toilets taken up for construction were actually completed or otherwise. The study also further ascertained the level of usage of toilets constructed in terms of  percentage of family members using or not using them and if no, the reasons therefore, In case the toilets are constructed and are not being used, ascertain the present usage of the same other than as latrines. The project involved survey of more than 15000 households in 12 districts, data collection through primary and secondary sources, survey questionnaire preparation, development of methodology to ascertain the status of usage of toilets, and report preparation.

Refer to the report here.

We work with central and state governments on monitoring and evaluation of sanitation programs.

 

Join now

Paddy fields are the most dominant anthropogenic sources of methane to the atmosphere (5-20% of the total emission from all anthropogenic sources).

Anaerobic decomposition of organic material in flooded rice fields produces methane, which escapes to the atmosphere primarily by transport through the rice plants.

Water Management and Reduction in CH4 emissions:

Core CarbonX (CCX) is working together with farmers in reducing the methane emissions from Paddy fields. CCX has already implemented a project on 1800 acres of land in the Nalgonda district in Telangana State, India.

The project promotes the Alternate Wetting and Drying (AWD) method that helps water management in the rice field, thereby, increasing the yield of the paddy and reducing methane emissions. In addition, this project benefits the farmers by supporting additional revenue from the carbon market for sustainable rice cultivation.

We are working with various state governments, institutions, NGOs and farmers. Our aim is to implement the AWD method in paddy fields totalling 1 million hectares by 2025.

Join us on this mission.

 

Join now

The Circular economy is a part of the solution to deliver on the global environmental and social agenda. It is a crucial means to address Climate change, bio diversity loss, water scarcity, pollution and other major global challenges. Resource efficiency solutions focus on specific resources and explore ways to reduce their use and the negative impact of their uses.

Resource Efficiency and Circular Economy Strategies helps in reducing the negative impacts of plastic waste, E-Waste and Granite Waste.

Changes in the commodity markets and price volatility of resources in the last decade have significantly increased attention towards resource issues and its implications for supply security and competitiveness

Policy for Resource Efficiency and Circular Economy

Telangana, the youngest state of the country, is on a high growth path, which requires significant re-sources. Being a progressive state and to pursue economic development with minimal harm to the environment, Telangana government has taken an initiative to mainstream Resource Efficiency and Circular Economy in the priority sector in the State; enabling convergence with India’s Resource Efficiency strategy and SDG goals. The nodal department in the state of Telangana is TSIIC (Telangana state industrial infrastructure corporation). The work on this strategy paper is supported by the partnership project of EU and Government of India-EU –Resource Efficiency Initiative (EU-REI).

CCX looked at the role of abiotic resources (primary and secondary materials excluding fossil fuels) as part of strategy paper on the economic development of Telangana with minimum harm to environment, and evaluated the current policy framework, available technologies, and financial mechanisms which support the same.

We are working with various governments to fight climate change. Join us.

Join now

NULL